SBML Model Report

Model identifier: "BASE MODEL 201003 08"

July 2, 2015

1 General Overview

This is a document in SBML Level 2 Version 4 format. Table 1 gives an overview of the quantities of all components of this model.

Table 1: The SBML components in this model.
All components are described in more detail in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	6
events	1	constraints	0
reactions	8	function definitions	0
global parameters	21	unit definitions	12
rules	9	initial assignments	0

Model Notes

2 Unit Definitions

This is an overview of twelve unit definitions.

2.1 Unit pS

Name pS

Definition pS

2.2 Unit pA

Name pA
Definition pA
2.3 Unit mV

Name mV
Definition mV
2.4 Unit msec

Name msec
Definition ms
2.5 Unit mM

Name milliMolar
Definition $\mathrm{mmol} \cdot \mathrm{l}^{-1}$
2.6 Unit per_mM_per_msec

Name per_mM_per_msec
Definition $1 \cdot \mathrm{mmol}^{-1} \cdot \mathrm{~ms}^{-1}$
2.7 Unit per_msec

Name per_msec
Definition ms^{-1}
2.8 Unit substance

Name substance
Definition mol
2.9 Unit volume

Name volume
Definition 1
2.10 Unit area

Name area
Definition m^{2}
2.11 Unit length

Name length
Definition m
2.12 Unit time

Name time

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

| Id | Name | SBO | Spatial
 Dimensions | Size | Unit | Constant |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | Outside

3.1 Compartment default

This is a three-dimensional compartment with a constant size of one litre.
$+\quad 4$ Species
This model contains six species. The boundary condition of one of these species is set to true so that this species' amount cannot be changed by any reaction. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condition
C1	C1	default	mol	\boxminus	\boxminus
C2	C2	default	mol	\boxminus	\boxminus
C3	C3	default	mol	\boxminus	\boxminus
C4	C4	default	mol	\boxminus	\boxminus
0	O	default	mol	\boxminus	\boxminus
v	v	default	mol	\boxminus	\checkmark

5 Parameters

This model contains 21 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
alpha10	alpha10		4.04	ms^{-1}	\checkmark
alpha20	alpha20		6.70	ms^{-1}	\checkmark
alpha30	alpha30		4.39	ms^{-1}	\square
alpha40	alpha40		17.33	ms^{-1}	\square
beta10	beta10		2.88	ms^{-1}	\checkmark
beta20	beta20		6.30	ms^{-1}	\square
beta30	beta30		8.16	ms^{-1}	\checkmark
beta40	beta40		1.84	ms^{-1}	\checkmark
v1	v1		49.14	mV	\checkmark
v2	v2		42.08	mV	\checkmark
v3	v3		55.31	mV	\checkmark
v4	v4		26.55	mV	\checkmark
alpha1	alpha1		0.00	ms^{-1}	\boxminus
alpha2	alpha2		0.00	ms^{-1}	\boxminus
alpha3	alpha3		0.00	ms^{-1}	\boxminus
alpha4	alpha4		0.00	ms^{-1}	\boxminus
beta1	betal		0.00	ms^{-1}	\boxminus
beta2	beta 2		0.00	ms^{-1}	\boxminus
beta3	beta 3		0.00	ms^{-1}	\boxminus
beta4	beta4		0.00	ms^{-1}	\boxminus
I	I		0.00	pA	\boxminus

6 Rules

This is an overview of nine rules.

6.1 Rule 1

Rule is an assignment rule for parameter alpha1:

$$
\begin{equation*}
\text { alpha1 }=\text { alpha10 } \cdot \exp \left(\frac{\mathrm{v}}{\mathrm{v} 1}\right) \tag{1}
\end{equation*}
$$

6.2 Rule 2

Rule is an assignment rule for parameter alpha2:

$$
\begin{equation*}
\text { alpha2 }=\text { alpha20 } \cdot \exp \left(\frac{\mathrm{v}}{\mathrm{v} 2}\right) \tag{2}
\end{equation*}
$$

6.3 Rule 3

Rule is an assignment rule for parameter alpha3:

$$
\begin{equation*}
\text { alpha3 }=\text { alpha30 } \cdot \exp \left(\frac{\mathrm{v}}{\mathrm{v} 3}\right) \tag{3}
\end{equation*}
$$

6.4 Rule 4

Rule is an assignment rule for parameter alpha4:

$$
\begin{equation*}
\text { alpha4 }=\text { alpha } 40 \cdot \exp \left(\frac{\mathrm{v}}{\mathrm{v} 4}\right) \tag{4}
\end{equation*}
$$

6.5 Rule 5

Rule is an assignment rule for parameter beta1:

$$
\begin{equation*}
\text { beta1 }=\operatorname{beta} 10 \cdot \exp \left(\frac{-v}{\mathrm{v} 1}\right) \tag{5}
\end{equation*}
$$

6.6 Rule 6

Rule is an assignment rule for parameter beta2:

$$
\begin{equation*}
\text { beta } 2=\operatorname{beta} 20 \cdot \exp \left(\frac{-v}{\mathrm{v} 2}\right) \tag{6}
\end{equation*}
$$

6.7 Rule 7

Rule is an assignment rule for parameter beta3:

$$
\begin{equation*}
\operatorname{beta} 3=\operatorname{beta} 30 \cdot \exp \left(\frac{-v}{\mathrm{v} 3}\right) \tag{7}
\end{equation*}
$$

6.8 Rule 8

Rule is an assignment rule for parameter beta4:

$$
\begin{equation*}
\text { beta } 4=\operatorname{beta} 40 \cdot \exp \left(\frac{-v}{v 4}\right) \tag{8}
\end{equation*}
$$

6.9 Rule 9

Rule is an assignment rule for parameter I:

$$
\begin{equation*}
I=(-3.003) \cdot v \cdot \frac{0.3933-\exp \left(\frac{-v}{80.36}\right)}{1-\exp \left(\frac{v}{80.36}\right)} \cdot[0] \tag{9}
\end{equation*}
$$

7 Event

This is an overview of one event. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

7.1 Event v0

Name v0
Trigger The following condition decides whether this trigger may fire:

$$
\begin{equation*}
\mathrm{v}=0 \tag{10}
\end{equation*}
$$

Assignment The values of the assinment formula is computed at the moment this event fires.

$$
\begin{equation*}
[\mathrm{v}]=0.0001 \tag{11}
\end{equation*}
$$

8 Reactions

This model contains eight reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by one or more modifiers, the identifiers of the modifier species are written above the reaction arrow.

Table 5: Overview of all reactions

No	Id	Name	Reaction Equation
1	re1	$\mathrm{C} 1 \longrightarrow \mathrm{C} 2$	
2	re2	$\mathrm{C} 2 \longrightarrow \mathrm{C} 1$	
3	re3	$\mathrm{C} 2 \longrightarrow \mathrm{C} 3$	
4	re4	$\mathrm{C} 3 \longrightarrow \mathrm{C} 2$	
5	re7	$\mathrm{C} 3 \longrightarrow \mathrm{C} 4$	
6	re8	$\mathrm{C} 4 \longrightarrow \mathrm{C} 3$	
7	re9	$\mathrm{C} 4 \longrightarrow 0$	
8	re10	$\mathrm{O} \longrightarrow \mathrm{C} 4$	

8.1 Reaction re1

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$
\begin{equation*}
\mathrm{C} 1 \longrightarrow \mathrm{C} 2 \tag{12}
\end{equation*}
$$

Reactant

Table 6: Properties of each reactant.
Id \quad Name \quad SBO

C1 C1

Product

Table 7: Properties of each product.

Id	Name	SBO
C2	C 2	

Kinetic Law
Derived unit contains undeclared units

$$
\begin{equation*}
v_{1}=\text { alpha1 } \cdot \mathrm{C} 1 \tag{13}
\end{equation*}
$$

8.2 Reaction re2

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$
\begin{equation*}
\mathrm{C} 2 \longrightarrow \mathrm{C} 1 \tag{14}
\end{equation*}
$$

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
C2	C2	

Product

Table 9: Properties of each product.

Id	Name	SBO
C1	C1	

Kinetic Law
Derived unit contains undeclared units

$$
\begin{equation*}
v_{2}=\operatorname{beta} 1 \cdot[\mathrm{C} 2] \tag{15}
\end{equation*}
$$

8.3 Reaction re3

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$
\begin{equation*}
\mathrm{C} 2 \longrightarrow \mathrm{C} 3 \tag{16}
\end{equation*}
$$

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
C2	C2	

Product

Table 11: Properties of each product.

Id	Name	SBO
C3	C3	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{3}=\text { alpha } 2 \cdot[\mathrm{C} 2] \tag{17}
\end{equation*}
$$

8.4 Reaction re4

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$
\begin{equation*}
\mathrm{C} 3 \longrightarrow \mathrm{C} 2 \tag{18}
\end{equation*}
$$

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
C3	C3	

Product

Table 13: Properties of each product.

Id	Name	SBO
C2	C2	

Kinetic Law
Derived unit contains undeclared units

$$
\begin{equation*}
v_{4}=\operatorname{beta} 2 \cdot[\mathrm{C} 3] \tag{19}
\end{equation*}
$$

8.5 Reaction re7

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$
\begin{equation*}
\mathrm{C} 3 \longrightarrow \mathrm{C} 4 \tag{20}
\end{equation*}
$$

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
C3	C3	

Product

Table 15: Properties of each product.

Id	Name	SBO
C4	C 4	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{5}=\text { alpha3 } \cdot[\mathrm{C} 3] \tag{21}
\end{equation*}
$$

8.6 Reaction re8

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$
\begin{equation*}
\mathrm{C} 4 \longrightarrow \mathrm{C} 3 \tag{22}
\end{equation*}
$$

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
C4	C 4	

Product

Table 17: Properties of each product.

Id	Name	SBO
C3	C3	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{6}=\operatorname{beta} 3 \cdot[\mathrm{C} 4] \tag{23}
\end{equation*}
$$

8.7 Reaction re9

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$
\begin{equation*}
\mathrm{C} 4 \longrightarrow 0 \tag{24}
\end{equation*}
$$

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
C4	C 4	

Product

Table 19: Properties of each product.

Id	Name	SBO
0	O	

Kinetic Law

Derived unit contains undeclared units

$$
\begin{equation*}
v_{7}=\text { alpha } 4 \cdot[\mathrm{C} 4] \tag{25}
\end{equation*}
$$

8.8 Reaction re10

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$
\begin{equation*}
\mathrm{O} \longrightarrow \mathrm{C} 4 \tag{26}
\end{equation*}
$$

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
0	O	

Product

Table 21: Properties of each product.

Id	Name	SBO
C4	C 4	

Kinetic Law
Derived unit contains undeclared units

$$
\begin{equation*}
v_{8}=\operatorname{beta} 4 \cdot[0] \tag{27}
\end{equation*}
$$

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

9.1 Species C1

Name C1

Initial amount 1 mol

Charge 0

This species takes part in two reactions (as a reactant in re1 and as a product in re2).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{C} 1=v_{2}-v_{1} \tag{28}
\end{equation*}
$$

9.2 Species C2

Name C2
Initial amount 0 mol
This species takes part in four reactions (as a reactant in re2, re3 and as a product in re1, re4).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{C} 2=v_{1}+v_{4}-v_{2}-v_{3} \tag{29}
\end{equation*}
$$

9.3 Species C3

Name C3
Initial amount 0 mol
This species takes part in four reactions (as a reactant in re4, re7 and as a product in re3, re8).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{C} 3=v_{3}+v_{6}-v_{4}-v_{5} \tag{30}
\end{equation*}
$$

9.4 Species C4

Name C4
Initial amount 0 mol
This species takes part in four reactions (as a reactant in re8, re9 and as a product in re7, re10).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{C} 4=v_{5}+v_{8}-v_{6}-v_{7} \tag{31}
\end{equation*}
$$

9.5 Species 0

Name O

Initial amount 0 mol
This species takes part in two reactions (as a reactant in re10 and as a product in re9).

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} 0=v_{7}-v_{8} \tag{32}
\end{equation*}
$$

9.6 Species v

Name v
Initial amount -70 mol
Charge 0
Involved in event vo
one event influences the species' quantity.

References

Dräger, A., Planatscher, H., Wouamba, D. M., Schröder, A., Hucka, M., Endler, L., Golebiewski, M., Müller, W., and Zell, A. (2009). SBML2ETEX: Conversion of SBML files into humanreadable reports. Bioinformatics, 25(11), 1455-1456. 10.1093/bioinformatics/btp170.

