SBML Model Report

Model identifier: "BASE_MODEL_2010_03_08"

July 2, 2015

1 General Overview

This is a document in SBML Level 2 Version 4 format. Table 1 gives an overview of the quantities of all components of this model.

İ			<u> </u>
Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	6
events	1	constraints	0
reactions	8	function definitions	0
global parameters	21	unit definitions	12
rules	9	initial assignments	0

Table 1: The SBML components in this model.All components are described in more detail in the following sections.

Model Notes

2 Unit Definitions

This is an overview of twelve unit definitions.

2.1 Unit pS

Name pS

Definition **pS**

2.2 Unit pA

Name pA

 $\textbf{Definition} \ pA$

2.3 Unit mV

Name mV

 $\textbf{Definition} \ mV$

2.4 Unit msec

Name msec

Definition ms

2.5 Unit mM

Name milliMolar Definition $mmol \cdot l^{-1}$

2.6 Unit per_mM_per_msec

Name per_mM_per_msec Definition $1 \cdot \text{mmol}^{-1} \cdot \text{ms}^{-1}$

2.7 Unit per_msec

Name per_msec Definition ms⁻¹

2.8 Unit substance

Name substance

Definition mol

2.9 Unit volume

Name volume

Definition 1

2.10 Unit area

Name area

 $\text{Definition} \ m^2$

2.11 Unit length

Name length

 $\textbf{Definition} \ m$

2.12 Unit time

Name time

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.							
Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
default			3	1	litre		

3.1 Compartment default

This is a three-dimensional compartment with a constant size of one litre.

[▶] 4 Species

This model contains six species. The boundary condition of one of these species is set to true so that this species' amount cannot be changed by any reaction. Section 9 provides further details and the derived rates of change of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
C1	C1	default	mol	Β	
C2	C2	default	mol		
C3	C3	default	mol		
C4	C4	default	mol		
0	Ο	default	mol		
v	V	default	mol		\checkmark

5 Parameters

This model contains 21 global parameters.

Table 4: Properties of each parameter.					
Id	Name	SBO Value	e Unit	Constant	
alpha10	alpha10	4.04	1 ms ⁻¹		
alpha20	alpha20	6.70) ms^{-1}		
alpha30	alpha30	4.39	$9 m s^{-1}$		
alpha40	alpha40	17.33	$3 m s^{-1}$		
beta10	beta10	2.88	3 ms^{-1}		
beta20	beta20	6.30) ms^{-1}		
beta30	beta30	8.16	5 ms^{-1}		
beta40	beta40	1.84	$1 ms^{-1}$		
v1	v1	49.14	4 mV		
v2	v2	42.08	3 mV		
v3	v3	55.31	l mV		
v4	v4	26.55	5 mV		
alpha1	alpha1	0.00) ms^{-1}		
alpha2	alpha2	0.00) ms^{-1}		
alpha3	alpha3	0.00) ms^{-1}		
alpha4	alpha4	0.00) ms^{-1}		
beta1	beta1	0.00) ms^{-1}		
beta2	beta2	0.00) ms^{-1}		
beta3	beta3	0.00) ms^{-1}		
beta4	beta4	0.00) ms^{-1}		
I	Ι	0.00) pA		

Table 4: Properties of each parameter.

6 Rules

This is an overview of nine rules.

6.1 Rule 1

Rule is an assignment rule for parameter alpha1:

$$alpha1 = alpha10 \cdot exp\left(\frac{v}{v1}\right) \tag{1}$$

Produced by SBML2ATEX

5

6.2 Rule 2

Rule is an assignment rule for parameter alpha2:

$$alpha2 = alpha20 \cdot exp\left(\frac{v}{v2}\right)$$
(2)

6.3 Rule 3

Rule is an assignment rule for parameter alpha3:

$$alpha3 = alpha30 \cdot exp\left(\frac{v}{v3}\right) \tag{3}$$

6.4 Rule 4

Rule is an assignment rule for parameter alpha4:

$$alpha4 = alpha40 \cdot exp\left(\frac{v}{v4}\right) \tag{4}$$

6.5 Rule 5

Rule is an assignment rule for parameter beta1:

$$beta1 = beta10 \cdot exp\left(\frac{-v}{v1}\right) \tag{5}$$

6.6 Rule 6

Rule is an assignment rule for parameter beta2:

$$beta2 = beta20 \cdot exp\left(\frac{-v}{v2}\right) \tag{6}$$

6.7 Rule 7

Rule is an assignment rule for parameter beta3:

$$beta3 = beta30 \cdot exp\left(\frac{-v}{v3}\right) \tag{7}$$

6.8 Rule 8

Rule is an assignment rule for parameter beta4:

$$beta4 = beta40 \cdot exp\left(\frac{-v}{v4}\right) \tag{8}$$

Produced by SBML2ATEX

6

6.9 Rule 9

Rule is an assignment rule for parameter I:

$$I = (-3.003) \cdot v \cdot \frac{0.3933 - \exp\left(\frac{-v}{80.36}\right)}{1 - \exp\left(\frac{v}{80.36}\right)} \cdot [0]$$
(9)

7 Event

This is an overview of one event. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

7.1 Event v0

Name v0

Trigger The following condition decides whether this trigger may fire:

$$\mathbf{v} = \mathbf{0} \tag{10}$$

Assignment The values of the assinment formula is computed at the moment this event fires.

$$[v] = 0.0001 \tag{11}$$

8 Reactions

This model contains eight reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by one or more modifiers, the identifiers of the modifier species are written above the reaction arrow.

N⁰	Id	Name	Reaction Equation	SBO
			*	
1	re1		$C1 \longrightarrow C2$	
2	re2		$C2 \longrightarrow C1$	
3	re3		$C2 \longrightarrow C3$	
4	re4		$C3 \longrightarrow C2$	
5	re7		$C3 \longrightarrow C4$	
6	re8		$C4 \longrightarrow C3$	
7	re9		$C4 \longrightarrow 0$	
8	re10		$0 \longrightarrow C4$	

Table 5: Overview of all reactions

 ∞

8.1 Reaction re1

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$C1 \longrightarrow C2$$
 (12)

Reactant

Table 6: Properties of each reactant.					
	Id	Name	SBO		
·	C1	C1			

Product

Table 7: Properties of each product.						
	Id	Name	SBO			
	C2	C2		-		

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \texttt{alpha1} \cdot \texttt{C1} \tag{13}$$

8.2 Reaction re2

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$C2 \longrightarrow C1$$
 (14)

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
C2	C2	

Product

Table 9	: Pro	perties of	f each p	roduct.
	Id	Name	SBO	
	C1	C1		

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \mathtt{beta1} \cdot [\mathtt{C2}] \tag{15}$$

8.3 Reaction re3

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$C2 \longrightarrow C3$$
 (16)

Reactant

Table 1	0: Pro	perties o	of each 1	eactant.
	Id	Name	SBO	
	C2	C2		_

Product

Table 11: Properties of each product.

Id	Name	SBO
СЗ	C3	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \texttt{alpha2} \cdot [\texttt{C2}] \tag{17}$$

8.4 Reaction re4

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$C3 \longrightarrow C2$$
 (18)

Reactant

Table 12: Properties of each reactant.					
	Id	Name	SBO		
	CЗ	C3			

Product

Table 1	3: Pro	perties c	of each p	product.
	Id	Name	SBO	
	C2	C2		

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \mathtt{beta2} \cdot [\mathtt{C3}] \tag{19}$$

Produced by SBML2ATEX

8.5 Reaction re7

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$C3 \longrightarrow C4$$
 (20)

Reactant

Table 14	4: Pro	perties o	f each reactant.	
	Id	Name	SBO	
	C3	C3		

Product

Table 1	5: Pro	operties o	of each p	product.
	Id	Name	SBO	
	C4	C4		

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \texttt{alpha3} \cdot [\texttt{C3}] \tag{21}$$

8.6 Reaction re8

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$C4 \longrightarrow C3$$
 (22)

Reactant

Table 16: Properties of each reactant.

Id	Name	SBO
C4	C4	

Product

Table 1	7: Pro	operties c	of each p	oroduct.
	Id	Name	SBO	
	C3	C3		

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \texttt{beta3} \cdot [\texttt{C4}] \tag{23}$$

8.7 Reaction re9

This is an irreversible reaction of one reactant forming one product.

Reaction equation

 $C4 \longrightarrow 0$ (24)

Reactant

Table 1	8: Pro	perties o	f each r	eactant.
	Id	Name	SBO	
	C4	C4		•

Product

Table 19: Properties of each product.

Id	Name	SBO
0	0	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \texttt{alpha4} \cdot [\texttt{C4}] \tag{25}$$

8.8 Reaction re10

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$0 \longrightarrow C4$$
 (26)

Reactant

Table 20): Pro	operties o	of each i	reactant.
	Id	Name	SBO	
	0	0		

Product

Table 2	1: Pro	perties c	of each p	product.
	Id	Name	SBO	
	C4	C4		

Kinetic Law

Derived unit contains undeclared units

$v_8 = \mathtt{beta4} \cdot [\mathtt{0}] \tag{27}$
--

Produced by SBML2LATEX

9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

9.1 Species C1

Name C1

Initial amount 1 mol

Charge 0

This species takes part in two reactions (as a reactant in re1 and as a product in re2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{C}\mathbf{1} = v_2 - v_1 \tag{28}$$

9.2 Species C2

Name C2

Initial amount 0 mol

This species takes part in four reactions (as a reactant in re2, re3 and as a product in re1, re4).

$$\frac{d}{dt}C2 = v_1 + v_4 - v_2 - v_3 \tag{29}$$

9.3 Species C3

Name C3

Initial amount 0 mol

This species takes part in four reactions (as a reactant in re4, re7 and as a product in re3, re8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{C3} = v_3 + v_6 - v_4 - v_5 \tag{30}$$

9.4 Species C4

Name C4

Initial amount 0 mol

This species takes part in four reactions (as a reactant in re8, re9 and as a product in re7, re10).

$$\frac{d}{dt}C4 = v_5 + v_8 - v_6 - v_7 \tag{31}$$

Produced by SBML2ATEX 15

9.5 Species 0

Name O

Initial amount 0 mol

This species takes part in two reactions (as a reactant in re10 and as a product in re9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{0} = \mathbf{v}_7 - \mathbf{v}_8 \tag{32}$$

9.6 Species v

Name v

Initial amount -70 mol

Charge 0

Involved in event v0

one event influences the species' quantity.

References

Dräger, A., Planatscher, H., Wouamba, D. M., Schröder, A., Hucka, M., Endler, L., Golebiewski, M., Müller, W., and Zell, A. (2009). SBML2LATEX: Conversion of SBML files into human-readable reports. Bioinformatics, **25**(11), 1455–1456. 10.1093/bioinformatics/btp170.